

Low-cost, Scalable and Practical Post Quantum Key Distribution Infrastructure for EDS

Rouzbeh Behnia, Attila A. Yavuz, Oregon State University {behniar,attila.yavuz}@oregonstate.edu)

GOALS

- Authentication and integrity of control/measurement data is vital for the reliable operation of energy distribution systems.
- Post-Quantum (PQ) computers will render existing cryptographic systems insecure
- **Develop efficient PQ secure key exchange systems**
 - Efficient: can be deployed in low-end PMUs
 - Cheap to deploy as compared with physically secure key distribution
 - No additional infrastructure needed

FUNDAMENTAL QUESTIONS/CHALLENGES

- Critical vulnerabilities for smart-grids:
 - False data injection attacks
 - Tampering commands
 - Cascade failures

PQ secure key exchange is vital

- Twenty nations are competing to win the quantum future

RESEARCH RESULTS

Observation I: Lattice-Based Schemes for the Most Efficient Solution

- **Kyber**, a lattice-based KEM scheme that performs both encapsulation and decapsulation of keys in only $38\mu s$
- For authentication, we considered schemes based on three primitives.

Hash-based signatures:

- **Highly Secure**
- **Based on hash functions and Merkel tree**
- Very large parameter sizes
- Slow signing
- **Code-based signatures:**
- **Based on the Fiat-Shamir transform**
- Very large key sizes
- **Slow signing**
- Lattice-based scheme:
 - **Smaller key sizes**
 - **Efficient sign and verification**
 - Worst case to average case reduction

Top Hash

Party Lat.

1-1

hash(1.4)

Data

1-0

hash(1.3)

1.3

Hash 0

0-0

hash0.13

- Conventional Crypto (e.g., RSA) will be broken!
- Existing post-quantum secure methods are NOT enough
- **Extremely Expensive**: $\geq \$70k$ per device
- Require Fiber Optic Infrastructure: Very expensive to deploy/maintain nationwide
 - + Security is based on fundamental laws in physics
 - + Unconditionally secure against eavesdroppers
 - Expensive devices on each end
 - Range < 100 KM
 - Need of costly infrastructure
- Maintenance cost
- Not deployable on peripheral devices

RESEARCH PLAN

- Design and Implement an efficient Computationally secure postquantum key distribution
 - Security is based on computational problems
 - Need to store a few Kb of keys on end machines
 - + No need for additional hardware
 - + No additional infrastructure is needed
 - + Minimal maintenance cost
 - + Deployable on low-end embedded devices
 - + Can be bootstrapped with minimal usage of QKDs

Thrust I – Phase 1: Goal: **Identify Efficient CQKD Schemes**

Observation II: Bootstrapping with highly secure key distribution devices (QKD) at the main command centers is possible to boost the security

IMPACT ON STATE OF GRID SECURITY

- Security against quantum computing capable adversaries
 - The proposed system will offer confidentiality and authentication services for energy delivery systems against quantum computers.
- Efficient and low cost key distribution
 - The proposed system can be accommodated on low-end devices and sensors along with power stations.
- Achieve high security with minimum infrastructure cost
 - The new system can be deployed widely without requiring extensive use of physical post-quantum key distribution hardware, and can be bootstrapped by such hardware.

BROADER IMPACT

Post-quantum public key infrastructure

Open-source cryptographic framework

CERTIFICATE

Broad applicability to other domains with time-critical needs

COLLABORATION OPPORTUNITIES

- Collaboration and support from the industry can have the following impacts on this research:
 - The test and benchmark the system on simulated grids and testbeds to achieve full-fledge practicality assessment and deployment
 - Encourage the **broader adoption** of the system on IoT devices and systems that require long-term security

Contact: attila.yavuz@oregonstate.edu

Activity webpage: https://cred-c.org/researchactivity/low-cost-scalable-and- practical-post-quantum-key-distribution

CYBER RESILIENT ENERGY DELIVERY CONSORTIUM | CRED-C.ORG FUNDING SUPPORTPROVIDED BY THE U.S. DEPARTMENT OF ENERGY AND THE U.S. DEPARTMENT OF HOMELAND SECURITY